Dynamic Threshold Selection for the Classification of Large Water Bodies within Landsat-8 OLI Water Index Images
نویسندگان
چکیده
Surface water distribution extracted from remote sensing data has been used in water resource assessment, coastal management, and environmental change studies. Traditional manual methods for extracting water bodies cannot satisfy the requirements for mass processing of remote sensing data; therefore, accurate automated extraction of such water bodies has remained a challenge. The histogram bimodal method (HBM) is a frequently used objective tool for threshold selection in image segmentation. The threshold is determined by seeking twin peaks, and the valley values between them; however, automatically calculating the threshold is difficult because complex surfaces and image noise which lead to not perfect twin peaks (single or multiple peaks). We developed an operational automated water extraction method, the modified histogram bimodal method (MHBM). The MHBM defines the threshold range of water extraction through mass static data; therefore, it does not require the identification of twin histogram peaks. It then seeks the minimum values in the threshold range to achieve automated threshold. We calibrated the MHBM for many lakes in China using Landsat 8 Operational Land Imager (OLI) images, for which the relative error (RE) and squared correlation coefficient (R2) for threshold accuracy were found to be 2.1% and 0.96, respectively. The RE and root-mean-square error (RMSE) for the area accuracy of MHBM were 0.59% and 7.4 km2. The results show that the MHBM could easily be applied to mass time-series remote sensing data to calculate water thresholds within water index images and successfully extract the spatial distribution of large water bodies automatically.
منابع مشابه
Classification of Potential Water Bodies Using Landsat 8 OLI and a Combination of Two Boosted Random Forest Classifiers
This study proposes a new water body classification method using top-of-atmosphere (TOA) reflectance and water indices (WIs) of the Landsat 8 Operational Land Imager (OLI) sensor and its corresponding random forest classifiers. In this study, multispectral images from the OLI sensor are represented as TOA reflectance and WI values because a classification result using two measures is better tha...
متن کاملIdentification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree
Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land I...
متن کاملComparative analysis of remote sensing water indexes for wetland water body monitoring using Landsat images and the Google Earth Engine Platform0 (A Case study: Meighan Wetland, Iran)
Wetlands are dynamic and complex aquatic ecosystems that play an important role in the survival of many plant and animal species. This study modeled the spatio-temporal changes of the Arak Meighan wetland during 1985–2020 using the multi-temporal Landsat images. In doing so, the applicability of different satellite-derived indexes including NDVI, NDWI, MNDWI, AWEIsh , AWEInsh , and WRI was inve...
متن کاملDynamic Water Surface Detection Algorithm Applied on PROBA-V Multispectral Data
Water body detection worldwide using spaceborne remote sensing is a challenging task. A global scale multi-temporal and multi-spectral image analysis method for water body detection was developed. The PROBA-V microsatellite has been fully operational since December 2013 and delivers daily near-global synthesis with a spatial resolution of 1 km and 333 m. The Red, Near-InfRared (NIR) and Short W...
متن کاملOpen Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors
Open surface water bodies play an important role in agricultural and industrial production, and are susceptible to climate change and human activities. Remote sensing data has been increasingly used to map open surface water bodies at local, regional, and global scales. In addition to image statistics-based supervised and unsupervised classifiers, spectral indexand threshold-based approaches ha...
متن کامل